skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Walker, Nick"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Backchanneling behaviors on a robot, such as nodding, can make talking to a robot feel more natural and engaging by giving a sense that the robot is actively listening. For backchanneling to be effective, it is important that the timing of such cues is appropriate given the humans’ conversational behaviors. Recent progress has shown that these behaviors can be learned from datasets of human-human conversations. However, recent data-driven methods tend to overfit to the human speakers that are seen in training data and fail to generalize well to previously unseen speakers. In this paper, we explore the use of data augmentation for effective nodding behavior in a robot. We show that, by augmenting the input speech and visual features, we can produce data-driven models that are more robust to unseen features without collecting additional data. We analyze the efficacy of data-driven backchanneling in a realistic human-robot conversational setting with a user study, showing that users perceived the data-driven model to be better at listening as compared to rule-based and random baselines. 
    more » « less
  2. In this work, we present methods for using human-robot dialog to improve language understanding for a mobile robot agent. The agent parses natural language to underlying semantic meanings and uses robotic sensors to create multi-modal models of perceptual concepts like red and heavy. The agent can be used for showing navigation routes, delivering objects to people, and relocating objects from one location to another. We use dialog clari_cation questions both to understand commands and to generate additional parsing training data. The agent employs opportunistic active learning to select questions about how words relate to objects, improving its understanding of perceptual concepts. We evaluated this agent on Amazon Mechanical Turk. After training on data induced from conversations, the agent reduced the number of dialog questions it asked while receiving higher usability ratings. Additionally, we demonstrated the agent on a robotic platform, where it learned new perceptual concepts on the y while completing a real-world task. 
    more » « less